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�-Synuclein physiologically chaperones SNARE-complex assembly at the synapse but pathologically misfolds into neurotoxic aggregates
that are characteristic for neurodegenerative disorders, such as Parkinson’s disease, and that may spread from one neuron to the next
throughout the brain during Parkinson’s disease pathogenesis. In normal nerve terminals, �-synuclein is present in an equilibrium
between a cytosolic form that is natively unfolded and monomeric and a membrane-bound form that is composed of an �-helical
multimeric species that chaperones SNARE-complex assembly. Although the neurotoxicity of �-synuclein is well established, the rela-
tionship between the native conformations of �-synuclein and its pathological aggregation remain incompletely understood; most
importantly, it is unclear whether �-synuclein aggregation originates from its monomeric cytosolic or oligomeric membrane-bound
form. Here, we address this question by introducing into �-synuclein point mutations that block membrane binding and by then
assessing the effect of blocking membrane binding on �-synuclein aggregation and neurotoxicity. We show that membrane binding
inhibits �-synuclein aggregation; conversely, blocking membrane binding enhances �-synuclein aggregation. Stereotactic viral expres-
sion of wild-type and mutant �-synuclein in the substantia nigra of mice demonstrated that blocking �-synuclein membrane binding
significantly enhanced its neurotoxicity in vivo. Our data delineate a folding pathway for �-synuclein that ranges from a physiological
multimeric, �-helical, and membrane-bound species that acts as a SNARE-complex chaperone over a monomeric, natively unfolded form
to an amyloid-like aggregate that is neurotoxic in vivo.
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Introduction
�-Synuclein is an abundant neuronal protein that is highly
enriched in presynaptic terminals and functions as a SNARE-
complex chaperone (George et al., 1995; Iwai et al., 1995;
Burré et al., 2010). Pathologically, �-synuclein is a major com-
ponent of Lewy bodies in neurodegenerative disorders, in-
cluding Parkinson’s disease (PD; Spillantini et al., 1997;
Wakabayashi et al., 1997; Arawaka et al., 1998; Gai et al.,
1998). Moreover, point mutations (Polymeropoulos et al.,
1997; Krüger et al., 1998; Zarranz et al., 2004; Kiely et al., 2013;
Proukakis et al., 2013; Pasanen et al., 2014) and duplications
and triplications of the �-synuclein gene (Singleton et al.,
2003; Ibáñez et al., 2004) cause early-onset PD. Wild-type
�-synuclein forms amyloid-like fibrils during prolonged incu-

bation in solution; aggregation is enhanced by disease-related
mutations (Conway et al., 1998; El-Agnaf et al., 1998; Narhi et
al., 1999; Conway et al., 2000; Greenbaum et al., 2005; Freden-
burg et al., 2007; Uversky, 2007; Yonetani et al., 2009).
�-Synuclein aggregates exhibit various structures, ranging
from soluble oligomeric forms in ring-like, string-like, or
spherical shapes (protofibrils) to insoluble fibrils (Rochet et
al., 2000; Ding et al., 2002; Lashuel et al., 2002). These fibrils
are believed to form the basis of Lewy bodies, although it is still
controversial if smaller protofibrils or larger amyloid fibrils are the
toxic species of �-synuclein causing neuronal cell death (Breydo et
al., 2012; Lashuel et al., 2013). Additionally, �-synuclein pathology
may spread throughout the brain in a prion-like manner by propa-
gation of neurotoxic �-synuclein aggregates from one neuron to the
other (Desplats et al., 2009; Volpicelli-Daley et al., 2011; Luk et al.,
2012; Rey et al., 2013).

In presynaptic terminals, �-synuclein cycles between a sol-
uble and a membrane-bound state on synaptic vesicles (Ma-
roteaux et al., 1988; Iwai et al., 1995; Kahle et al., 2000).
Cytosolic �-synuclein is natively unfolded and monomeric,
whereas membrane-bound �-synuclein assumes an �-helical
conformation that mediates its association with membranes
and its SNARE-complex chaperoning activity (Weinreb et al.,
1996; Kim, 1997; Chandra et al., 2003; Jao et al., 2004; Ulmer
and Bax, 2005; Ulmer et al., 2005; Burré et al., 2010; Lokappa
and Ulmer, 2011; Fauvet et al., 2012; Burré et al., 2013).
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Whether aggregation of �-synuclein initiates from its lipid-
bound �-helical or from its unstructured state remains con-
troversial. Membranes have been reported to both accelerate
(Narayanan and Scarlata, 2001; Cole et al., 2002; Lee et al.,
2002) and inhibit (Narayanan and Scarlata, 2001; Zhu and
Fink, 2003; Jo et al., 2004) �-synuclein fibril formation. Un-
derstanding how and where �-synuclein aggregates form is
crucial for insight into its role in neurodegeneration. How-
ever, the relationship of membrane binding of �-synuclein to

its neurotoxic activity remains uncharacterized. Here, we
show that membrane binding of �-synuclein protects
�-synuclein from aggregation and inhibits its neurotoxicity.
Our data define a molecular folding pathway for �-synuclein
whereby �-synuclein physiologically functions as a
membrane-bound �-helical multimer but can pathologically
assemble into neurotoxic �-stranded aggregates when it dis-
sociates from the membranes in an unstructured monomeric
form.

Figure 1. Design of lipid-binding deficient mutants of �-synuclein. A, �-Synuclein domain structure (red, lipid-binding domain; blue, protein-interaction domain), with lipid-binding deficient
mutations marked in red and 11-mer sequences highlighted with black boxes. B, SDS-PAGE analysis of purified recombinant mutant �-synuclein (5 �g/lane), stained with Coomassie Brilliant Blue.
C, D, Lipid binding of wild-type and mutant �-synuclein. C, Recombinant �-synuclein was incubated with negatively charged liposomes (composition: 30% phosphatidylserine (PS) and 70%
phosphatidylcholine (PC)) and subjected to a flotation assay. Eight fractions were collected from top to bottom of the flotation gradient, and equal volumes of each fraction were separated by
SDS-PAGE and immunoblotted for �-synuclein. D, The top two fractions were defined as lipid bound and quantitated as percentage of total �-synuclein (means � SEMs; **p � 0.001 by
Mann–Whitney U test; n � 3). E, Analysis of the effect of �-synuclein mutations on membrane-binding induced �-synuclein multimerization. Recombinant �-synuclein was incubated with
negatively charged liposomes (composition: 30% PS, 70% PC) and exposed to increasing concentrations of the chemical crosslinker glutaraldehyde (concentration: 0 – 0.5%). Equal volumes of
crosslinked proteins were analyzed by immunoblotting. Arrowheads indicate �-synuclein multimers.
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Materials and Methods
Recombinant protein expression and purification. Full-length human
�-synuclein cDNA was inserted into modified pGEX-KG vectors (GE
Healthcare), containing an N-terminal TEV protease recognition site.
�-Synuclein contained an extra N-terminal glycine after cleavage with
TEV protease in addition to the normal N terminus of �-synuclein.
Mutant �-synuclein constructs were generated by site-specific mutagen-
esis, according to the protocol of the manufacturer (Stratagene). All pro-
teins were expressed as GST fusion proteins in bacteria (BL21 strain),
essentially as described previously (Burré et al., 2010). Bacteria were
grown to optical density 0.6 (measured at 600 nm), and protein expres-
sion was induced with 0.05 mM isopropyl �-D-thiogalactoside for 6 h at
room temperature. Bacteria were harvested by centrifugation for 20 min
at 4000 rpm, and pellets were resuspended in solubilization buffer [PBS,
0.5 mg/ml lysozyme, 1 mM PMSF, DNase, and an EDTA-free protease
inhibitor mixture (Roche)]. Cells were broken by sonication, and insol-
uble material was removed by centrifugation for 30 min at 7000 average
centrifugal force (gav) and 4°C. Proteins were affinity-purified using
glutathione Sepharose bead (GE Healthcare) incubation overnight at
4°C, followed by TEV protease (Invitrogen) cleavage overnight at room
temperature. His-tagged TEV protease was removed by incubation with
Ni-NTA (Qiagen) overnight at 4°C. Protein concentration was assessed
using the BCA method according to the protocol of the manufacturer
(Thermo Fisher Scientific).

Liposome preparation, liposome binding assay, and liposome aggregation
assay. Liposomes were prepared as described previously (Burré et al.,
2010). For lipid binding assays, 1 mg of brain phosphatidylcholine (PC;
Avanti Polar Lipids) or 0.7 mg of PC and 0.3 mg of brain phosphatidyl-
serine (PS; Avanti Polar Lipids) in chloroform were dried in a glass vial
under a nitrogen stream. For aggregation studies, 84 mg of brain PC and

36 mg of brain PS were used. Residual chloroform was removed by
lyophilization for 2 h. Small unilamellar vesicles were formed by sonicat-
ing 1 mg/ml (for lipid binding studies) or 120 mg/ml (for aggregation
studies) of lipids in PBS on ice (Barenholz et al., 1977). For lipid binding
studies, 5 �g protein of �-synuclein were incubated with 100 �g of
liposomes for 2 h at room temperature. Samples were then either sub-
jected to a liposome flotation assay (Burré et al., 2010) or crosslinking
experiments. For aggregation assays, 3 �g of �-synuclein was incubated
with or without 60 �g of liposomes in 1 M NaCl in PBS with protease
inhibitors at 37°C and 300 rpm for indicated time periods. A total of 5 �l
of sample was mixed with 125 �l of 100 �M K114 (Santa Cruz Biotech-
nology) in 100 mM glycine-NaOH, pH 8.45, and K114 fluorescence was
measured using a Mithras LB 940 plate reader (Berthold Technologies;
excitation, 390 nm and emission, 535 nm). Images of �-synuclein aggre-
gates were acquired on a DFC400 Leica microscope.

Size exclusion chromatography. Purified recombinant �-synuclein (90
�l of 6 mg/ml starting concentration) was separated using a Superdex
200 10/300 GL column on an AKTA FPLC system (GE Healthcare),
equilibrated with PBS. To estimate molecular masses, molecular mass
standards thyroglobulin, apoferritin, �-amylase, alcohol dehydrogenase,
albumin, and carbonic anhydrase (all from Sigma) were separated under
the same conditions. Relative mobility of �-synuclein was determined using
linear regression of molecular mass versus migration distance (log molecular
weight vs Rf value, measured as running distance of protein/total running
distance). Blue dextran was used to measure the void volume.

Chemical crosslinking. Crosslinking experiments were performed us-
ing glutaraldehyde (TCI America) as described previously (Burré et al.,
2014). Briefly, 30 �l of recombinant myc-tagged �-synuclein (2 �g on
liposomes) were incubated for 5 min with 10 �l of glutaraldehyde. Reac-

Figure 2. Aggregation of �-synuclein in vitro. A, B, Recombinant wild-type �-synuclein or mutant �-synuclein unable to bind to liposomes were incubated in buffer (left panels) or in the
presence of charged liposomes (composition: 30% PS, 70% PC; right panels) at 37°C and 300 rpm. At the indicated time points, aggregation of �-synuclein was assessed by light microscopy.
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tion was stopped by addition of 10 �l of 1 M Tris, pH 8.8. Samples were
boiled before separating via SDS-PAGE.

Protein expression levels and in situ aggregation. HEK293T cells or
N2a neuroblastoma cells (both from ATCC) were transfected with
cDNA encoding human wild-type or mutant �-synuclein using cal-
cium phosphate as described previously (Burré et al., 2012). For mea-
suring protein expression levels, 48 h after transfection, cells were
washed twice in PBS and solubilized in 2� Laemmli’s sample buffer.
Proteins were separated using SDS-PAGE and immunoblotted for
�-synuclein and �-actin. For immunocytochemistry, cells were

washed twice in PBS containing 1 mM MgCl2, followed by fixation
with 4% paraformaldehyde (PFA) in PBS for 20 min at room temper-
ature, washing in PBS, and solubilization in 0.1% Triton X-100 in PBS
for 5 min at room temperature. After washing cells with PBS, cells
were blocked in 5% BSA in PBS for 20 min at room temperature and
were incubated with anti �-synuclein antibodies over night at 4°C.
The next day, cells were washed with PBS, blocked again, and incu-
bated with Alexa Fluor-488-labeled secondary antibody and DAPI for
1 h at room temperature in the dark. Cells were washed in PBS and
mounted using Vectashield (Vector Laboratories). Imaging was per-

Figure 3. In vitro aggregation of �-synuclein (�Syn). A, B, Amyloid formation of �-synuclein. Recombinant �-synuclein was incubated as described for Figure 2. At the indicated time points,
wild-type and mutant �-synuclein were analyzed for amyloid fibril formation in buffer (A) or in the presence of charged liposomes (B), using the dye K114 (means � SEMs; *p � 0.05, **p � 0.01,
***p � 0.001 by Mann–Whitney U test; ##p � 0.01, ###p � 0.001 by two-way ANOVA; n � 7; n.s., not significant). C, D, Analysis of loss of monomer of �-synuclein. At the indicated time points,
the same volumes of wild-type and mutant �-synuclein aggregating in buffer or in the presence of charged liposomes were analyzed by immunoblotting, and loss of monomer was quantitated
(means � SEMs; **p � 0.01 by Mann–Whitney U test; ###p � 0.001 by two-way ANOVA; n � 7; n.s., not significant). E, Analysis of wild-type and mutant �-synuclein by gel filtration. At the
indicated time points, 90 �l of aggregating recombinant wild-type and mutant �-synuclein were analyzed by gel filtration. Visible aggregates were removed before loading via centrifugation to
avoid clogging of the gel filtration column.
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formed on a DFC400 Leica microscope for HEK293T cells and on an
Eclipse 80i Nikon microscope for N2a neuroblastoma cells.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

assay was performed essentially as described previously (Mosmann,
1983), with minor modifications. HEK293T or N2a neuroblastoma cells
were transfected with cDNA encoding human wild-type or mutant
�-synuclein in a 12-well format using calcium phosphate as described
previously (Burré et al., 2012). To measure metabolic activity, 48 h after
transfection, medium was replaced with 500 �l of fresh medium and 50
�l of 5 mg/ml MTT (VWR) in PBS, and cells were incubated for 1 h at
37°C. Medium was removed, and reduction of MTT to purple formazan
was visualized after solubilization with 200 �l of 40 mM HCl in isopro-
panol for 2 min at room temperature by measuring absorption at 560 nm
in a spectrophotometer (Synergy H1 Hybrid Reader; BioTek). Metabolic
activity was determined by subtracting absorption at 620 nm (reference
wavelength). Each condition was done in duplicate, and each well was
measured in duplicate.

Expression of �-synuclein in substantia nigra. Lentiviral vector L302
containing an IRES-driven GFP reporter (containing myc-tagged
�-synuclein mutants or empty vector), vesicular stomatitis virus glyco-
protein, the protein Rev, and Rev-responsive element were co-
transfected in 1:1:1:1 molar ratio into HEK293T cells (ATCC) using
calcium phosphate. Medium containing the viral particles was collected
48 h later and centrifuged for 10 min at 2000 rpm to remove cellular
debris. Viral particles were concentrated by centrifugation for 90 min at
50,000 � gav, and viral pellet was resuspended in neuronal medium
containing 4 mg/ml polybrene (Sigma-Aldrich) at 1% of the precentrifu-
gation volume, snap frozen in liquid nitrogen, and kept at �80°C. Male
CD1 mice (P40 –P45; Charles River Laboratories) were anesthetized by
intraperitoneal injection of 125–150 mg/kg Avertin (tribromoethanol;
Sigma-Aldrich). One microliter of viral solution was delivered through a
glass pipette at a flow rate of 0.15 �l/min unilaterally (left hemisphere)
at the following coordinates: anteroposterior, 2.6 –3.3 mm posterior
to bregma (determined based on lambda-to-bregma distance of each
mouse); lateral, 1 mm from midline suture; ventral, 4.2 mm below
brain surface. After 10 d of recovery, analysis of mouse behavior was
commenced.

Behavioral studies. The beam-walking test was used to record deficits
in balance and limb control (accuracy and strength in limb placement).
The animal’s ability to navigate across a beam to return to its home cage
was tested using a wooden dowel (cylindrical beam 60 cm in length, 1 cm
in diameter). The beam was fixed steadily on both ends 40 cm above the
ground leading to a small cage filled with bedding from the animal’s
home cage. Mice were placed onto one side of the beam and were left to
cross the beam to reach the cage. Mice that escaped into the cage were
picked up and placed on the opposite side again for a total of three trials
with 1 min intertrial intervals. The number of foot slips for each mouse
per trial was scored. Force-plate actometry, a sensitive and quantitative
method (Fowler et al., 2001), was used to document changes in locomo-
tor activity induced by injection of lentivirus expressing �-synuclein
mutants in substantia nigra. From the force-plate traces/coordinate re-
cords, total distance traveled, continuous distance traveled, low-mobility
bouts, and spatial confinement per 6 min session were determined.

Immunohistochemistry. Anesthetized mice were perfused with ice-cold
4% PFA in PBS, followed by removal of the brain and overnight fixation
in 4% PFA in PBS (room temperature). Fixed brains were cryopreserved
in 30% sucrose in PBS for 2 d and frozen in Tissue-Tek Optimal Cutting
Temperature embedding medium (Sakura Finetechnical). Coronal brain
sections (20 �m) were cut at �20°C (CM3050S cryostat; Leica), picked
up on slides, and heat adhered at 37°C for 30 min. For immunostaining,
slides were incubated in blocking solution (3% BSA and 0.1% Triton
X-100 in PBS) for 1 h, followed by overnight incubation with primary
antibodies (4°C). Slides were washed three times in PBS (5 min each) and
incubated in blocking buffer containing Alexa Fluor 488-coupled, 546-
coupled, or 633-coupled secondary antibodies (Invitrogen) for 3 h at
room temperature. After six washes in PBS, slides were mounted with
Vectashield hard-set mounting medium with DAPI (Vector Laborato-
ries), followed by fluorescence microscopy. All quantitations of immu-
nofluorescence images were done with the image processing and analysis
software NIH ImageJ. Total tyrosine hydroxylase (TH)-positive neurons,
NeuN-positive puncta, and DAPI puncta were counted in each section
containing GFP fluorescence. NeuN puncta were normalized to total

Figure 4. Aggregation and toxicity of �-synuclein in HEK293T cells. A, B, Aggregation of
wild-type and mutant �-synuclein in HEK293T cells transfected with equal amounts of expres-
sion vectors encoding wild-type and mutant �-synuclein. A, Two days after transfection, cells
were fixed and immunostained with antibodies against the myc-epitope. B, The number of
immunopositiveaggregatesperfieldwasquantitatedandcomparedwithwild-typelevels(means�
SEMs; ***p � 0.001 by Mann–Whitney U test; n � 3 independent cultures). C, D, Expression of
wild-type and mutant �-synuclein (�-Syn) in HEK293T cells. Two days after transfection, expression
levels were analyzed by immunoblotting with antibodies against the myc-epitope (C), normalized to
�-actin levels, and quantitated as percentage of wild-type levels (D; means�SEMs; n�4 indepen-
dent cultures). E, Metabolic activity of HEK293T cells transfected with wild-type and mutant
�-synuclein. Two days after transfection, cells were subjected to an MTT assay. Data were normalized
to wild-type �-synuclein levels (means � SEMs; *p � 0.05 by Mann–Whitney U test; n � 6 inde-
pendent cultures).
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DAPI puncta in the same brain section. Image
acquisition and thresholding parameters were
kept constant across each experiment.

Gel electrophoresis and protein quantitation.
Protein samples were separated by SDS-PAGE
and transferred onto nitrocellulose mem-
branes. Blots were blocked in Tris-buffered sa-
line containing 0.1% Tween 20 (Sigma) and
3% fat-free milk for 2 h at room temperature.
The blocked membrane was incubated in
blocking buffer containing primary antibody
for 1 h, followed by five washes. Membranes
were incubated in blocking buffer containing
horseradish peroxidase (HRP)-conjugated sec-
ondary antibody (1:5000; MP Biomedicals) for
2 h at room temperature. HRP immunoblots
were developed using enhanced chemilumi-
nescence (GE Healthcare). Quantitative im-
munoblotting experiments were performed
with either fluorescent secondary antibodies
(1:20,000; LI-COR) for 1 h at room tempera-
ture or iodinated secondary antibodies (1:
1000; PerkinElmer Life and Analytical
Sciences) overnight at room temperature as
described previously (Rosahl et al., 1995). Flu-
orescent immunoblots were scanned using an
Odyssey CLx (LI-COR). 125I blots were exposed
to PhosphorImager screens (GE Healthcare)
overnight and scanned using a Typhoon scanner
(GE Healthcare), followed by quantification with
ImageQuant software (GE Healthcare).

Primary antibodies. Monoclonal antibodies
used were �-synuclein (610786; BD Biosciences
Transduction Laboratories), �-actin (A1978;
Sigma), myc (clone 6E10; Developmental Studies
Hybridoma Bank), and NeuN (MAB377; Milli-
pore). Polyclonal antibodies used were �-synuclein
(U1127) and TH (AB112; Abcam).

Statistical analyses. Curves obtained from in
vitro aggregation assays were analyzed by two-
way repeated-measures ANOVA, using Graph-
Pad Prism (GraphPad Software). All other data
shown are means � SEMs and were analyzed by
Mann–Whitney U test to compare the data
groups.

Results
Design of lipid-binding deficient
mutants of �-synuclein
The finding that �-synuclein multim-
erizes on lipid membranes (Burré et al.,
2014) raises the question whether such
�-helical multimers directly transition
into �-strand-containing neurotoxic ag-
gregates or whether it is the unstructured
soluble monomeric �-synuclein species
that gives rise to such aggregates. To ad-
dress this central question, we generated
�-synuclein mutants that were designed
to lack lipid binding based on previous
studies (Burré et al., 2012). We generated
two different double point mutations
(A11P/V70P and T44P/A89P), targeting
at the same time both lipid-binding
�-helices in �-synuclein and a quadruple
point mutation combining the two dou-
ble point mutations (A11P/T44P/V70P/

Figure 5. Aggregation and toxicity of �-synuclein in N2a neuroblastoma cells. A, Expression of wild-type and mutant �-synuclein in
N2a neuroblastoma cells. Two days after transfection, cells were fixed and immunostained with antibodies against the myc epitope. Nuclei
were visualized using DAPI. B, C, Expression of wild-type and mutant �-synuclein (�-Syn) in N2a neuroblastoma cells. Two days after
transfection, expression levels were analyzed by immunoblotting with antibodies against the myc epitope (B), normalized to �-actin
levels, and quantitated as percentage of wild-type levels (C; means � SEMs; n � 6 independent cultures). D, Metabolic activity of N2a
neuroblastomacellstransfectedwithwild-typeandmutant�-synuclein.Twodaysaftertransfection,cellsweresubjectedtoanMTTassay.Data
werenormalizedtowild-type�-synucleinlevels(means�SEMs;*p�0.05,**p�0.01byMann–WhitneyUtest;n�6independentcultures).

Figure 6. Lentiviral expression of wild-type and mutant�-synuclein in dopaminergic substantia nigra neurons. A, Schematic overview
of the stereotactic injection experiments. Wild-type mice (40 – 45 d old) were stereotactically and unilaterally injected into the substantia
nigra (left). Mice were monitored every 5 d from 10 to 45 d after injection, when mice were killed for histochemical analysis (right). B, C,
Beam-walk assay. B, Motor defects were assayed using the beam-walk task in which foot slips on a beam walk were measured. Three
rounds of beam walk were analyzed per session. Averaged foot slips were recorded. C, Quantitation of average foot slips at 45 d after
injections. Data are means � SEMs (* ,#p � 0.05 by Mann–Whitney U test; n � 5 mice).
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A89P; Fig. 1A,B). We found that all of these mutations
obliterated phospholipid binding (Fig. 1C,D). In agreement with
previous results showing that membrane binding is required for
�-synuclein to form multimers in the presence of liposomes

(Burré et al., 2014), all three lipid-binding
deficient mutants did not form multimers
in the presence of liposomes, confirming
the design strategy (Fig. 1E).

Binding to liposomes protects �-
synuclein from aggregation in vitro
We then asked whether liposomes in-
crease or decrease aggregation of wild-
type �-synuclein and how liposomes
affect aggregation of mutant �-synuclein
that does not bind to membranes. We
used an in vitro assay in which we incu-
bated wild-type and mutant recombinant
�-synuclein at 37°C over a period of 35 d,
in either solution or presence of charged
liposomes and monitored aggregation by
microscopy. We found that, in the ab-
sence of liposomes, wild-type �-synuclein
and all three types of mutant �-synuclein
formed visible aggregates, which appeared
to be smaller and formed more slowly for
mutant �-synucleins than for wild-type
�-synuclein (Fig. 2A). Strikingly, addition
of liposomes completely blocked aggrega-
tion of wild-type �-synuclein but had no
effect on the aggregation of the lipid-
binding deficient �-synuclein mutants
(Fig. 2B). These experiments suggest that
�-synuclein aggregates form from its mo-
nomeric soluble state.

Lewy bodies include amyloid-type ag-
gregates of �-synuclein (Spillantini et al.,
1998). Therefore, we quantified the de-
gree of amyloid formation of �-synuclein
using the fluorescent dye K114. We found
formation of amyloid fibrils for wild-type
�-synuclein only in the buffer condition
(Fig. 3A,B), confirming the absence of
visible aggregates in the previous experi-
ment (Fig. 2B). Mutants of �-synuclein
that are unable to bind to liposomes
formed K114-detectable amyloid fibrils in
the buffer condition at a later time point
than wild-type �-synuclein and did not ex-
hibit the same size of the fluorescence signal
(Fig. 3A). However, in the presence of lipo-
somes, no time-dependent increase of K114
fluorescence was observed for either wild-
type or mutant �-synuclein, possibly be-
cause the liposomes may sequester the
hydrophobic K114 fluorescence dye (Fig.
3B). This is suggested by the observation
that the relative fluorescence of K114 in the
presence of liposomes was �10-fold higher
than in the buffer condition, which may
mask aggregation of �-synuclein on lipo-
somes, and makes it impossible to use K114
for monitoring amyloid formation in the
presence of membranes.

To circumvent this problem, we quantified the degree of aggre-
gation under these in vitro conditions in parallel by measuring the
loss of monomeric �-synuclein species as a function of incubation

Figure 7. Motor impairments of mice injected with lentiviral particles expressing �-synuclein variants. A, Representative traces
of force-plate analyses. Mice were injected and analyzed as described for Figure 5. B–I, Analysis of spatial confinement, total and
continuous distance traveled, and low mobility bouts, as calculated from the force-plate data obtained with multiple identically
injected mice. Every 5 d, mice were subjected to behavioral analyses (B, D, F, H ), and data were plotted as the difference at 45 d
after injection (C, E, G, I ). Data are means � SEMs (* ,#p � 0.05, ** ,##p � 0.01 by Mann–Whitney U test; n � 5 mice).
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time using SDS-PAGE. This assay is based
on the observation that �-synuclein aggre-
gates are SDS resistant and do not enter an
SDS gel. These quantifications confirmed
the dramatic inhibition of wild-type
�-synuclein aggregation by liposomes
and clearly demonstrated that mutant
�-synuclein aggregated completely inde-
pendent of whether or not liposomes were
present, consistent with their lack of lipo-
some binding (Fig. 3C,D). Similar to wild-
type �-synuclein, aggregates of mutant
�-synuclein could not be resolved by
SDS-PAGE (Fig. 3C,D) or by gel filtration
(Fig. 3E), likely because of formation of very
large aggregates of a broad range of sizes,
which were removed before gel filtration or
did not enter the gel matrix in SDS-PAGE.
Viewed together, these experiments suggest
that, in the absence of membranes, the lipid-
binding deficient �-synuclein mutants are
no more prone to aggregation than wild-
type �-synuclein but that the presence of
membranes blocks aggregation of wild-type
but not lipid-binding deficient mutant
�-synuclein.

�-Synuclein mutants deficient in lipid
binding reveal increased aggregation in
situ and increased cellular toxicity
To test the question whether lipid-binding
deficient mutants of �-synuclein form
aggregates in a cellular environment, we
transfected HEK293T cells with cDNAs ex-
pressing wild-type �-synuclein or mutant
�-synucleins that are unable to bind to lipid
membranes. Despite the presence of mem-
branes, wild-type �-synuclein aggregates
when overexpressed in transfected HEK293T
cells, probably because there is an excess of
�-synuclein. However, we found that
lipid-binding deficient �-synuclein mu-
tants aggregated approximately twofold
more strongly than wild-type �-synuclein
in transfected HEK293T cells (Fig. 4A,B).
The expression levels of full-length wild-
type and mutant �-synucleins were simi-
lar in the transfected HEK293T cells, and
no proteolytic �-synuclein species were
observed, suggesting that the �-synuclein
mutants did not aggregate more readily
because they were expressed at higher lev-
els or because they were proteolytically
processed (Fig. 4C,D).

We additionally measured the metabolic activity of transfected
HEK293T cells to assess whether �-synuclein mutants impair cellu-
lar function and thereby health. We found that all lipid-binding
deficient variants of �-synuclein reduced metabolic activity (Fig.
4E). In parallel, we repeated the same experiments in transfected N2a
neuroblastoma cells. N2a cells transfected with cDNAs expressing
wild-type �-synuclein or mutant �-synucleins that are unable to
bind to lipid membranes revealed multiple aggregates (Fig. 5A). Yet
we were unable to quantitate �-synuclein aggregates because we

could not visually isolate individual aggregates. Similar to trans-
fected HEK293T cells, the expression levels of full-length wild-type
and mutant �-synucleins were similar (Fig. 5B,C), and mutant
�-synucleins reduced metabolic activity in N2a neuroblastoma cells
(Fig. 5D). Note that, as observed previously (Burré et al., 2012),
mutants containing the A11P substitution revealed slightly reduced
SDS-PAGE mobility for unclear reasons.

Viewed together, these data suggest that �-synuclein aggre-
gates form exclusively from the soluble monomeric unstructured

Figure 8. Neuron loss in mice expressing �-synuclein (�Syn) mutants in the substantia nigra. A, C, Control lentiviruses (con-
trol) or lentiviruses expressing wild-type or mutant �-synucleins were stereotactically and unilaterally injected into the substantia
nigra of 40- to 45-d-old mice. Forty-five days after injection, injected areas were immunostained for either tyrosine hydroxylase
(TH; left) or NeuN (right) and DAPI (blue). IRES-driven GFP marks the injection site. B, D, The density of dopaminergic neurons was
quantitated by immunostaining for TH (B), and the density of NeuN-positive (non-dopaminergic) neurons was quantitated by
immunostaining for NeuN (D). Data are means � SEMs (* ,#p � 0.05 by Mann–Whitney U test; n � 5 mice).
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conformation of �-synuclein and suggest that blocking lipid
binding of �-synuclein increases aggregation in a cellular envi-
ronment. Moreover, these data provide a possible explanation for
the pathogenecity of increased �-synuclein expression because
increased levels of total �-synuclein would be expected to in-
crease the levels of soluble �-synuclein as a starting point for
�-synuclein aggregation.

Mice expressing lipid-binding deficient �-synuclein mutants
exhibit impaired motor function
Is in vitro aggregation of �-synuclein related to its in vivo neuro-
toxicity? The lipid-binding mutants provide a unique opportu-
nity to test this question because these mutants are devoid of
physiological activity yet aggregate. We stereotactically injected
lentiviruses expressing wild-type or mutant �-synuclein unilat-
erally into substantia nigra of wild-type mice (Fig. 6A). We then
analyzed the mice starting at 10 d after the injections for motor
deficits using force-plate actometry and the beam-walking assay
and killed the mice at 45 d after the injections for immunohisto-
chemical studies.

Compared with mice expressing only GFP (control), mice
expressing wild-type �-synuclein revealed an increasing number
of foot slips in the beam-walk assay as a function of time after the
injections. Importantly, mice expressing mutant �-synuclein un-
able to bind to lipids exhibited an aggravated phenotype (Fig.
6B,C). Similarly, expression of wild-type �-synuclein produced
an overall decrease in motor performance, as demonstrated by an
increase in spatial confinement, reduced total and continuous
distance traveled, and showed an increase in low mobility bouts
(Fig. 7). Mice expressing lipid-binding deficient mutants of
�-synuclein exhibited impairments in these motor performance
assays that were significantly more severe than the impairments
observed in mice expressing wild-type �-synuclein.

Lack of lipid binding of �-synuclein increases neurotoxicity
Next, we analyzed whether the impairments in motor function
observed after expression of wild-type and mutant �-synuclein
are attributable to a loss of neurons in the injected areas. We first
analyzed dopaminergic cell loss by quantitating TH-positive neu-
rons (Fig. 8A). GFP produced by the virus via an internal ribo-

somal entry site was used to identify the injection site. Compared
with control injections, brains expressing wild-type �-synuclein
exhibited a reduction in the number of dopaminergic neurons in
the injected area, in a similar time frame and to a similar extent as
demonstrated previously (Fig. 8B; Kirik et al., 2002; Klein et al.,
2002; Lo Bianco et al., 2002; Kirik et al., 2003; Lauwers et al., 2003;
Yamada et al., 2004; St Martin et al., 2007; Azeredo da Silveira et
al., 2009; McFarland et al., 2009; Koprich et al., 2010; Winner et
al., 2011; Burré et al., 2012; Decressac et al., 2012; Gombash et al.,
2013; Oliveras-Salvá et al., 2013). Again, the lipid-binding muta-
tion aggravated this phenotype. We also assessed loss of NeuN-
positive neurons by measuring the ratio of NeuN-positive to
DAPI-positive cells, which monitors the survival of non-TH-
positive neurons. Again, we observed the same relationship be-
tween the expression of wild-type or mutant �-synuclein and
neuronal cell loss (Fig. 8C,D). Viewed together, these data
show that mutant �-synuclein unable to bind phospholipids is
more neurotoxic than wild-type �-synuclein, suggesting that
neurotoxicity induced by �-synuclein derives from its soluble
form.

Discussion
Extensive studies over the past decade have revealed that
�-synuclein, when overexpressed, is neurotoxic, that neurotox-
icity correlates with �-synuclein aggregation, that �-synuclein
mutations observed in familial PD cause increased aggregation,
and that �-synuclein neurotoxicity and aggregation may spread
from one neuron to the next (Spillantini et al., 1997; Waka-
bayashi et al., 1997; Singleton et al., 2003; Ibáñez et al., 2004;
Desplats et al., 2009; Volpicelli-Daley et al., 2011; Burré et al.,
2012; Rey et al., 2013). At the same time, �-synuclein was shown
to physiologically bind to membranes and to enhance SNARE-
complex assembly (Iwai et al., 1995; Jo et al., 2000; Chandra et al.,
2003; Burré et al., 2010). These two sets of data raised two overall
questions. First, what folding pathway mediates �-synuclein ag-
gregation and neurotoxicity— does �-synuclein aggregate by
misfolding of its multimeric membrane-bound form or its mo-
nomeric cytoplasmic form? Second, what is the relationship be-
tween physiological functions of �-synuclein and its pathological
effects—are they interdependent or unrelated?

Figure 9. Schematic of �-synuclein conformations associated with its physiological function and pathological activities. Soluble �-synuclein is natively unstructured and monomeric. After
binding to highly curved membranes such as synaptic vesicles, �-synuclein undergoes a conformational change and folds into a broken amphiphathic �-helix, which is associated with multim-
erization and mediates its SNARE-complex chaperoning function. Under pathological conditions, soluble �-synuclein forms �-sheet-like oligomers (protofibrils), which convert into amyloid fibrils
and eventually deposit into Lewy bodies. Protofibrils and fibrils may propagate from neuron to neuron in PD and Lewy body dementia and from glia to glia in multiple system atrophy.
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In the present study, we have made two principal sets of ob-
servations that address these basic questions. First, we described
two different double point mutations of �-synuclein that block
phospholipid binding. These mutations were different from all of
the many previously described mutations that do not block phos-
pholipid binding and show that blocking lipid-binding by
�-synuclein enhances its aggregation in a cellular environment,
whereas addition of liposomes to wild-type �-synuclein inhibits
aggregation (Figs. 1-5). It is important to note that our data do
not suggest that these mutations increase the rate of aggregation
of �-synuclein as such. They do not have the same effect as PD
mutations in this sense; instead, these mutations only increase
aggregation in a cellular environment presumably because the
block of lipid binding by these mutations increases the amount of
soluble monomeric �-synuclein. Thus, our results indicate that
�-synuclein aggregation is increased when �-synuclein is in its
soluble unstructured monomeric form and is blocked when
�-synuclein is in its membrane-bound �-helical multimeric
form. Long-range intramolecular interactions between the N ter-
mini and C termini of �-synuclein may be crucial for the process
of fibril formation (Ulrih et al., 2008). Possibly, binding of the 95
N-terminal helical residues of �-synuclein to lipid membranes
and binding of the 45 C-terminal residues of �-synuclein to
synaptobrevin-2 on the synaptic vesicle membrane (Burré et al.,
2010) prevents contacts between the N and C termini of
�-synuclein and thereby impedes aggregation.

Second, we show that blocking phospholipid-binding by
�-synuclein enhances its neurotoxicity (Figs. 6 – 8). These results
are consistent with the notion that neurotoxicity is attributable to
�-synuclein aggregation, although these results do not reveal
what type of �-synuclein aggregate is neurotoxic. Based on these
results, it seems to us that the neurotoxicity of �-synuclein is
produced by a gain-of-toxic function effect of �-synuclein when
it misfolds into aggregates and that its physiological and patho-
genic activities are unrelated to each other. This conclusion sup-
ports the finding that �-synuclein mutations that cause PD
accelerate �-synuclein aggregation (Conway et al., 2000; Pandey
et al., 2006; Uversky, 2007).

Viewed together, our data point to a folding pathway whereby
�-synuclein physiologically is primarily phospholipid bound
in presynaptic terminals, in which it normally functions to chap-
erone SNARE-complex assembly (Fig. 9). A small pool of
�-synuclein is probably always soluble and monomeric in vivo.
However, overexpression of �-synuclein dramatically increases
the relative amount of soluble �-synuclein because the synaptic
vesicle binding sites become saturated. �-Synuclein protein levels
are increased with aging in the substantia nigra and correlate with
decreased TH immunostaining (Chu and Kordower, 2007). Fur-
thermore, alleles within a Rep1 polymorphic region 10 kB up-
stream of the a-synuclein gene promoter that confers risk for
sporadic PD (Maraganore et al., 2006) have been associated with
increased expression of �-synuclein mRNA in human and mouse
neurons (Chiba-Falek et al., 2003; Cronin et al., 2009) and in the
temporal neocortex and substantia nigra in humans (Linnertz et
al., 2009). Together with the link of gene duplications and tripli-
cations to early onset PD (Singleton et al., 2003; Ibáñez et al.,
2004), these findings suggest that increased concentrations of
�-synuclein mRNA and protein constitute a triggering factor for
PD pathogenesis in the brains of patients with PD. Soluble
�-synuclein spontaneously forms aggregates at a low rate; this rate is
increased with an increase in the �-synuclein concentration but
more importantly with the presence of a nucleating amount of pre-
formed aggregates, such as could be transferred from another neu-

ron during the proposed cell-to-cell spread (Desplats et al., 2009;
Volpicelli-Daley et al., 2011; Luk et al., 2012; Rey et al., 2013). Ther-
apeutically, these considerations suggest that �-synuclein toxicity
could be combated not only by inhibiting cell-to-cell spread or ag-
gregation but also by chaperoning of soluble �-synuclein, de-
creasing �-synuclein synthesis, increasing �-synuclein
degradation, or increasing �-synuclein phospholipid binding,
which are avenues that could be pursued productively.
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